The general public is not privy to the IPCC debate. But I have been speaking to somebody who understands the issues: Nic Lewis. A semiretired successful financier from Bath, England, with a strong mathematics and physics background, Mr. Lewis has made significant contributions to the subject of climate change
He first collaborated with others to expose major statistical errors in a 2009 study of Antarctic temperatures. In 2011 he discovered that the IPCC had, by an unjustified statistical manipulation, altered the results of a key 2006 paper by Piers Forster of Reading University and Jonathan Gregory of the Met Office (the United Kingdom’s national weather service), to vastly increase the small risk that the paper showed of climate sensitivity being high. Mr. Lewis also found that the IPCC had misreported the results of another study, leading to the IPCC issuing an Erratum in 2011.
Mr. Lewis tells me that the latest observational estimates of the effect of aerosols (such as sulfurous particles from coal smoke) find that they have much less cooling effect than thought when the last IPCC report was written. The rate at which the ocean is absorbing greenhouse-gas-induced warming is also now known to be fairly modest. In other words, the two excuses used to explain away the slow, mild warming we have actually experienced—culminating in a standstill in which global temperatures are no higher than they were 16 years ago—no longer work.
In short: We can now estimate, based on observations, how sensitive the temperature is to carbon dioxide. We do not need to rely heavily on unproven models. Comparing the trend in global temperature over the past 100-150 years with the change in “radiative forcing” (heating or cooling power) from carbon dioxide, aerosols and other sources, minus ocean heat uptake, can now give a good estimate of climate sensitivity.
The conclusion—taking the best observational estimates of the change in decadal-average global temperature between 1871-80 and 2002-11, and of the corresponding changes in forcing and ocean heat uptake—is this: A doubling of CO2 will lead to a warming of 1.6°-1.7°C (2.9°-3.1°F).
This is much lower than the IPCC’s current best estimate, 3°C (5.4°F).
Mr. Lewis is an expert reviewer of the recently leaked draft of the IPCC’s WG1 Scientific Report. The IPCC forbids him to quote from it, but he is privy to all the observational best estimates and uncertainty ranges the draft report gives. What he has told me is dynamite.
Given what we know now, there is almost no way that the feared large temperature rise is going to happen. Mr. Lewis comments: “Taking the IPCC scenario that assumes a doubling of CO2, plus the equivalent of another 30% rise from other greenhouse gases by 2100, we are likely to experience a further rise of no more than 1°C.”
A cumulative change of less than 2°C by the end of this century will do no net harm. It will actually do net good—that much the IPCC scientists have already agreed upon in the last IPCC report. Rainfall will increase slightly, growing seasons will lengthen, Greenland’s ice cap will melt only very slowly, and so on.
Some of the best recent observationally based research also points to climate sensitivity being about 1.6°C for a doubling of CO2. An impressive study published this year by Magne Aldrin of the Norwegian Computing Center and colleagues gives a most-likely estimate of 1.6°C. Michael Ring and Michael Schlesinger of the University of Illinois, using the most trustworthy temperature record, also estimate 1.6°C.
The big question is this: Will the lead authors of the relevant chapter of the forthcoming IPCC scientific report acknowledge that the best observational evidence no longer supports the IPCC’s existing 2°-4.5°C “likely” range for climate sensitivity?